
MA2213 Numerical Analysis I 

Single-precision floating point format: 1/8/23 (sign/exponent/mantissa) 

Sign bit is 1=negative, 0=positive.  Actual exponent is obtained by subtracting 127. 

Denormalized numbers: exponent=0 is denormalized.  Then the actual exponent is -126, and implicit digit is 0 instead of 1.  

There are 2^24-1 different denormalized values, because +0 and -0 are the same meaning. 

Largest number: exponent = 0b11111110 (actual exponent is 127), mantissa = 2^23-1; because exponent=0b11111111 is 

special meaning (inf and nan, both have +ve and -ve versions).  X/0b11111111/0 == inf, X/0b11111111/!0 == nan 

Significant digits: 𝑝∗ approximates 𝑝 to 𝑡 significant digits in base 𝑏 if 𝑡 is the largest non-negative integer such that 
|𝑝−𝑝∗|

|𝑝|
≤

0.5 × 𝑏1−𝑡 

Number of decimal significant digits in decimal representation of float: 0.5 × 21−24 ≈ 5.96 × 10−8 < 0.5 × 101−7 hence 

there are 7 significant digits. 

In practice, just round number after 𝑡 digits. 

In general, a number expressed as single-precision float will be approximated to 24 sig digits in binary (unless it is too 

big->inf or too small->denormalized). 

Three ways to measure error: actual error = 𝑝 − 𝑝∗; absolute error = |𝑝 − 𝑝∗|; relative error = 
|𝑝−𝑝∗|

|𝑝|
 (where 𝑝 ≠ 0).  𝑝 is the 

actual value and 𝑝∗ is the approximation. 

Finite-digit arithmetic: Using three-digit arithmetic -> three significant digits.  After every operation, round to three 

significant digits. 

In general, it is better to sum up numbers with closer magnitude first.  Kahan’s algorithm calculates the sum of a list of 

numbers more accurately. 

Algorithms and numerical error: Numerical error = round-off error + truncation error (when truncating a series) 

When doing summation of (infinite) series, we can split the terms into separate series so that we don’t repeat too many 

computations. 

If 𝑔(𝑥) ≔ 𝑎0 +
𝑏1

𝑎1+
𝑏2

𝑎2+
𝑏3
𝑎3+⋱

 then 𝑃0 = 1 and 𝑄0 = 0 and 𝑃1 = 𝑎0 and 𝑄1 = 1 and 𝑃𝑘 = 𝑎𝑘−1𝑃𝑘−1 + 𝑏𝑘−1𝑃𝑘−2 and 𝑄𝑘 =

𝑎𝑘−1𝑄𝑘−1 + 𝑏𝑘−1𝑄𝑘−2 and kth approx. is 
𝑃𝑘

𝑄𝑘
. 

Some summations: 

 ∑ 𝑖𝑛
𝑖=1 =

𝑛(𝑛+1)

2
=
𝑛2

2
+
𝑛

2
          ∑ 𝑖2𝑛

𝑖=1 =
𝑛(𝑛+1)(2𝑛+1)

6
=
𝑛3

3
+
𝑛2

2
+
𝑛

6
          ∑ 𝑖3𝑛

𝑖=1 = (
𝑛(𝑛+1)

2
)
2
=
𝑛2(𝑛+1)2

4
=
𝑛4

4
+
𝑛3

2
+
𝑛2

4
 

Determinant as area of unit object after transformation. 

Cramer’s rule:  If 𝐴 ∈ 𝑀𝑛×𝑛 is invertible then the unique solution of Ax=b is 𝑥𝑖 =
𝑑𝑒𝑡𝐴𝑖

𝑑𝑒𝑡𝐴
 for i=1,2,…,n; where 𝐴𝑖  is the matrix 

obtained by replacing the ith column of A with the column vector b. 

𝑑𝑒𝑡 (
𝑎 𝑏
𝑐 𝑑

) = 𝑎𝑑 − 𝑏𝑐; 𝑑𝑒𝑡 (

𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖

) = 𝑎𝑒𝑖 + 𝑏𝑓𝑔 + 𝑐𝑑ℎ − 𝑎𝑓ℎ − 𝑏𝑑𝑖 − 𝑐𝑒𝑔 

Gaussian elimination.  O(n^3).  Have to pick a pivot row whose element is nonzero.  Swapping can be O(1) if we use an 

additional layer of indirection (i.e. maintain an array of indices). 

Cramer’s rule vs Gaussian elimination: Difference is just that n-digit arithmetic may produce different results.  For 2x2 

matrices, the Gaussian elimination is usually more accurate (lesser residual) than Cramer’s rule.  Both are O(n^3) but 

Gaussian elim has lower constant factor. 

(n-1)*n*(n+1)/3 subs/mults in Gaussian elim; (n-1)*n/2 divs in Gaussian elim. 



Pivoting strategies for gaussian elimination (because it is dangerous to check whether a float equals to zero): 

• Partial pivoting: Find the entry with largest magnitude in the pivot column. 

• Complete pivoting: Find the entry with largest magnitude in the whole matrix, and eliminate that column first. 

• Scaled partial pivoting: Find the entry with largest (<magnitude of entry>/<largest magnitude in whole row>).  

Takes extra O(n) divisions per pivot, and O(n^2) comparisons per pivot, so the total is O(n^2) divisions and 

O(n^3) comparisons. 

• Scaled partial pivoting, but only scale once: Before running gaussian elimination, determine the scaling factor of 

each row (i.e. largest element in the row) once, and use those factors for the whole gaussian elimination 

algorithm.  O(n^2) additional operations, but might have greater error. 

Gaussian elimination to find the determinant – after getting an upper triangular matrix, the determinant is the product of 

the diagonal entries.  In any upper or lower triangular matrix, the determinant is the product of the diagonal entries. 

LU Matrix factorisation: Two row operations: 

• 𝐸𝑖 ⟵ 𝐸𝑖 −𝑚𝑖𝑗𝐸𝑗  (multiply the jth row by 𝑚𝑖𝑗  (ratio of values of pivot column in ith row to jth row) and subtract the 

result from the ith row, and 𝑖 > 𝑗) 

o Equivalent to left-multiplying (𝐼 − 𝑚𝑖𝑗𝐞𝑖𝐞𝑗
𝑇) to the augmented matrix 

▪ Lower-triangular matrix with all diagonal entries equal 1, and all non-diagonal entries equal 0 

except its (𝑖, 𝑗)-element is −𝑚𝑖𝑗 . 

• 𝐸𝑖 ⟷ 𝐸𝑗  (exchange ith row with jth row) 

o Equivalent to left-multiplying (𝐼 − (𝐞𝑖 − 𝐞𝑗)(𝐞𝑖 − 𝐞𝑗)
𝑇
) to the augmented matrix 

▪ Symmetric matrix with diagonal entries equal 1, except (𝑖, 𝑖)-element and (𝑗, 𝑗)-element equal 0; all 

non-diagonal entries equal 0, except (𝑖, 𝑗)-element and (𝑗, 𝑖)-element equal 1 

• …where 𝐞𝑖  is the vector (0, … ,0,1,0, … ,0)𝑇 whose ith entry is nonzero 

Theorem 1:  From the same row 𝐸𝑗 , can eliminate pivot element in all subsequent rows 𝐸𝑖  with a single matrix: 

Suppose 𝑗 ∈ [1, 𝑛 − 1] and 𝑖1, 𝑖2, … , 𝑖𝑘 ∈ [𝑗 + 1, 𝑛], then ∏ (𝐼 −𝑚𝑖𝑟𝑗𝐞𝑖𝑟𝐞𝑗
𝑇)𝑘

𝑟=1 = 𝐼 − (∑ 𝑚𝑖𝑟𝑗𝐞𝑖𝑟
𝑘
𝑟=1 )𝐞𝑗

𝑇. 

Let 𝐦𝑗 ≔ (0,… 0,𝑚𝑗+1,𝑗 , … ,𝑚𝑛𝑗)
𝑇
= ∑ 𝑚𝑖𝑟𝑗𝐞𝑖𝑟

𝑘
𝑟=1 .  Hence (∏ (𝐼 −𝐦𝑗𝐞𝑗

𝑇)1
𝑗=𝑛−1 )𝐴 = 𝑈. (A is the original matrix, U is the 

row-echelon form.) 

Theorem 2:  Can reverse the multi-row elimination operation: 

Suppose 𝑗 < 𝑛, and 𝐦𝑗 ≔ (0, …0,𝑚𝑗+1,𝑗 , … ,𝑚𝑛𝑗)
𝑇
= ∑ 𝑚𝑖𝑟𝐞𝑖𝑟

𝑘
𝑟=1  then (𝐼 −𝐦𝑗𝐞𝑗

𝑇)
−1
= (𝐼 +𝐦𝑗𝐞𝑗

𝑇). 

Hence 𝐴 = (∏ (𝐼 + 𝐦𝑗𝐞𝑗
𝑇)𝑛−1

𝑗=1 )𝑈. 

Theorem 3:  Suppose 𝑖1 ≤ 𝑖2 ≤ ⋯ ≤ 𝑖𝑘 < 𝑛 and for any 𝑗 = 1,… , 𝑘, 𝐦𝑗 is an n-dimensional column vector whose first 𝑖𝑗  

components are zero.  Then ∏ (𝐼 + 𝐦𝑗𝐞𝑖𝑗
𝑇 )𝑘

𝑗=1 = 𝐼 + ∑ 𝐦𝑗𝐞𝑖𝑗
𝑇𝑘

𝑗=1 .  Hence 𝐴 = (𝐼 + ∑ 𝐦𝑗𝐞𝑖𝑗
𝑇𝑘

𝑗=1 )𝑈. 

Theorem 4:  If a linear system with coefficient matrix A can be solved by gaussian elimination without pivoting, then there 

exists a unique unit lower-triangular matrix (i.e. main diagonal has all 1) L such that 𝑈 = 𝐿−1𝐴 is an upper-triangular matrix.  

Actually 𝐿 = (𝐼 + ∑ 𝐦𝑗𝐞𝑖𝑗
𝑇𝑘

𝑗=1 ). 

After computing U and L in O(n^3), we can solve Ax=b in O(n^2) by solving Ly=b and Ux=y (it is O(n^2) to do backward 

substitution on a triangular matrix). 

Lagrange interpolation: Finding the unique polynomial of degree≤n that passes through n+1 points: 

(𝑥0, 𝑓(𝑥0)), (𝑥1, 𝑓(𝑥1)),… , (𝑥𝑛, 𝑓(𝑥𝑛)) 

To find the polynomial, we solve for the coefficients 𝑎0, 𝑎1, … , 𝑎𝑛 in (

1 𝑥0 ⋯ 𝑥0
𝑛

1 𝑥1 ⋯ 𝑥1
𝑛

⋮ ⋮ ⋱ ⋮
1 𝑥𝑛 ⋯ 𝑥𝑛

𝑛

)(

𝑎0
𝑎1
⋮
𝑎𝑛

) = (

𝑓(𝑥0)

𝑓(𝑥1)
⋮

𝑓(𝑥𝑛)

). 

The matrix in the expression above is a Vandermonde matrix. Vandermonde matrix with distinct 𝑥0, 𝑥1, … , 𝑥𝑛  are linearly 

independent (and have determinant = ∏ (𝑥𝑗 − 𝑥𝑖)0≤𝑖<𝑗≤𝑛 ), hence the solution exists and is unique. 



Lagrange basis polynomial: 𝐿𝑘(𝑥) =
(𝑥−𝑥0)⋯(𝑥−𝑥𝑘−1)(𝑥−𝑥𝑘+1)⋯(𝑥−𝑥𝑛)

(𝑥𝑘−𝑥0)⋯(𝑥𝑘−𝑥𝑘−1)(𝑥𝑘−𝑥𝑘+1)⋯(𝑥𝑘−𝑥𝑛)
.  At 𝑥 = 𝑥𝑘, 𝐿𝑘(𝑥𝑘) = 1; at all other 𝑥𝑖, 𝐿𝑘(𝑥𝑖) = 0.  

Then the unique polynomial is 𝑃𝑛(𝑥) ≔ 𝑦0𝐿0(𝑥) + 𝑦1𝐿1(𝑥) +⋯+ 𝑦𝑛𝐿𝑛(𝑥). 

Error analysis of Lagrange interpolating polynomial: 

Thm: ∃ξ ∈ (min{𝑥, 𝑥0 , 𝑥1, … , 𝑥𝑛}, max{𝑥, 𝑥0, 𝑥1, … , 𝑥𝑛}) s.t. 𝑓(𝑥) = 𝑃𝑛(𝑥) +
𝑓(𝑛+1)(ξ)

(𝑛+1)!
(𝑥 − 𝑥0)(𝑥 − 𝑥1)… (𝑥 − 𝑥𝑛). 

To find the maximum error (as a function of 𝑥), find the maximum value of |𝑓(𝑛+1)(ξ)| in the required interval. 

Divided differences:  0th divided difference: 𝑓[𝑥] ≔ 𝑓(𝑥). nth divided difference: 𝑓[𝑥0, … , 𝑥𝑛] ≔
𝑓[𝑥1,…,𝑓𝑛]−𝑓[𝑥0,…,𝑥𝑛−1]

𝑥𝑛−𝑥0
. 

(Note: 𝑓[𝑥0, … , 𝑥𝑛] is independent of the order of 𝑥0, … , 𝑥𝑛) 

Then 𝑃𝑛(𝑥) = 𝑓[𝑥0] + 𝑓[𝑥0, 𝑥1](𝑥 − 𝑥0) + ⋯+ 𝑓[𝑥0 , 𝑥1, … , 𝑥𝑛](𝑥 − 𝑥0)(𝑥 − 𝑥1)… (𝑥 − 𝑥𝑛−1). 

(Modified) Horner’s method: 

𝑃𝑛(𝑥) = 𝑓[𝑥0] + (𝑥 − 𝑥0)(𝑓[𝑥0, 𝑥1] + (𝑥 − 𝑥1)(𝑓[𝑥0, 𝑥1, 𝑥2] + ⋯+ (𝑥 − 𝑥𝑛−1)(𝑓[𝑥0, 𝑥1, … , 𝑥𝑛])… )) 

(i.e. can evaluate the polynomial at any 𝑥 in O(n)) 

Runge’s phenomenon:  When using more points for Lagrange interpolation yields worse results. 

Runge’s function:  𝑓(𝑥) =
1

1+25𝑥2
  (in general, when |𝑓(𝑛)(𝑥)| increases rapidly as 𝑛 increases, Lagrange interpolation might 

not work) 

Cubic spline interpolation:  Given 𝑥0, 𝑥1, … , 𝑥𝑛  and 𝑓(𝑥0), 𝑓(𝑥1),… , 𝑓(𝑥𝑛), want to find 𝑆(𝑥) 

• 𝑆(𝑥𝑘) = 𝑓(𝑥𝑘) for all k = 0,1,…,n 

• 𝑆(𝑥) is piecewise cubic in each range [𝑥𝑘−1, 𝑥𝑘] 

• 𝑆(𝑥) is second-order differentiable 

• Either 𝑆′′(𝑥0) = 𝑆
′′(𝑥𝑛) = 0 (natural) or 𝑆′(𝑥0) = 𝑓

′(𝑥0), 𝑆
′(𝑥𝑛) = 𝑓

′(𝑥𝑛) (clamped) 

Then 𝑆𝑘(𝑥) = 𝑀𝑘−1
(𝑥−𝑥𝑘)

3

6(𝑥𝑘−1−𝑥𝑘)
+𝑀𝑘

(𝑥−𝑥𝑘−1)
3

6(𝑥𝑘−𝑥𝑘−1)
+ 𝐴𝑘𝑥 + 𝐵𝑘 (since 𝑆𝑘

′′(𝑥) is linear, and 𝑀𝑘 ≔ 𝑆′′(𝑥𝑘)) 

where 𝐴𝑘 =
𝑓(𝑥𝑘)−𝑓(𝑥𝑘−1)

𝑥𝑘−𝑥𝑘−1
−
1

6
(𝑀𝑘 −𝑀𝑘−1)(𝑥𝑘 − 𝑥𝑘−1) and 𝐵𝑘 =

𝑥𝑘𝑓(𝑥𝑘−1)−𝑥𝑘−1𝑓(𝑥𝑘)

𝑥𝑘−𝑥𝑘−1
+
1

6
(𝑀𝑘𝑥𝑘−1 −𝑀𝑘−1𝑥𝑘)(𝑥𝑘 − 𝑥𝑘−1) 

For natural boundary conditions, 𝑀1, 𝑀2, … ,𝑀𝑛−1 is the solution for 

(

 

2 λ1
μ2 2 λ2

μ3 ⋱ λ𝑛−2
μ𝑛−1 2 )

 (

𝑀1
𝑀2
⋮

𝑀𝑛−1

) =

(

6𝑓[𝑥0, 𝑥1, 𝑥2]

6𝑓[𝑥1, 𝑥2 , 𝑥3]
⋮

6𝑓[𝑥𝑛−2, 𝑥𝑛−1, 𝑥𝑛]

), and 𝑀0 = 𝑀𝑛 = 0. 

For clamped boundary conditions, 𝑀0, 𝑀1, … ,𝑀𝑛 is the solution for 

(

 

2 λ0
μ1 2 λ1

μ2 ⋱ λ𝑛−1
μ𝑛 2 )

 (

𝑀0
𝑀1
⋮
𝑀𝑛

) = (

6𝑓[𝑥0 , 𝑥0, 𝑥1]

6𝑓[𝑥0 , 𝑥1, 𝑥2]
⋮

6𝑓[𝑥𝑛−1, 𝑥𝑛, 𝑥𝑛]

), 

where 𝑓[𝑥0, 𝑥0] = 𝑓
′(𝑥0), 𝜆0 = 𝜇𝑛 = 1, and 𝜇𝑘 =

𝑥𝑘−𝑥𝑘−1

𝑥𝑘+1−𝑥𝑘−1
 and 𝜆𝑘 =

𝑥𝑘+1−𝑥𝑘

𝑥𝑘+1−𝑥𝑘−1
. 

Least squares approximation:  Given 𝑚 points, find a polynomial 𝑝𝑛(𝑥) minimising ∑ (𝑝𝑛(𝑥𝑖) − 𝑦𝑖)
2𝑚

𝑖=0 . 

(equivalently, want to find 𝐚 = (𝑎0, … , 𝑎𝑛)
𝑇 minimising (𝑋𝐚 − 𝐲)𝑇(𝑋𝐚 − 𝐲) where 𝑋 = (

1 𝑥0 ⋯ 𝑥0
𝑛

1 𝑥1 ⋯ 𝑥1
𝑛

⋮ ⋮ ⋱ ⋮
1 𝑥𝑚 ⋯ 𝑥𝑚

𝑛

).) 

Thm:  𝐚 minimises (𝑋𝐚 − 𝐲)𝑇(𝑋𝐚 − 𝐲)    ⟺    (𝑋𝑇𝑋)𝐚 = (𝑋𝑇𝐲) (called the normal equation). 

Weighted least squares approximation:  Given 𝑚 points, find a polynomial 𝑝𝑛(𝑥) minimising ∑ 𝑤𝑖(𝑝𝑛(𝑥𝑖) − 𝑦𝑖)
2𝑚

𝑖=0 . 

(equivalently, want to minimise (𝑋𝐚 − 𝐲)𝑇𝑊(𝑋𝐚 − 𝐲) where 𝑊 ≔ diag{𝑤0, … , 𝑤𝑛}). 

To do so, minimise (√𝑊𝑋𝐚 − √𝑊𝐲)
𝑇
(√𝑊𝑋𝐚 − √𝑊𝐲) where √𝑊 ≔ diag{√𝑤0, … ,√𝑤𝑛}; 

i.e. solve (�̃�𝑇�̃�)𝐚 = (�̃�𝑇�̃�) where �̃� = √𝑊𝑋 and �̃� = √𝑊𝐲. 

Trapezoidal rule:  ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
=
𝑏−𝑎

2
(𝑓(𝑎) + 𝑓(𝑏)) −

1

12
(𝑏 − 𝑎)3𝑓′′(𝜉) for some ξ ∈ [𝑎, 𝑏]. 



Simpson’s rule:  ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
=
𝑏−𝑎

6
(𝑓(𝑎) + 4𝑓 (

𝑎+𝑏

2
) + 𝑓(𝑏)) −

1

90
(
𝑏−𝑎

2
)
5
𝑓(4)(ξ) for some ξ ∈ [𝑎, 𝑏]. 

Newton-Cotes formulas: 

For odd 𝑛, ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
= ∑ 𝑤𝑘𝑓(𝑥𝑘) +

ℎ𝑛+2𝑓(𝑛+1)(𝜉)

(𝑛+1)!
∫ 𝑠(𝑠 − 1)… (𝑠 − 𝑛)𝑑𝑠
𝑛

0
𝑛
𝑘=0 , where ℎ ≔

𝑏−𝑎

𝑛
= 𝑥𝑘 − 𝑥𝑘−1; 

For even 𝑛, ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
= ∑ 𝑤𝑘𝑓(𝑥𝑘) +

ℎ𝑛+3𝑓(𝑛+2)(𝜉)

(𝑛+2)!
∫ 𝑠2(𝑠 − 1)… (𝑠 − 𝑛)𝑑𝑠
𝑛

0
𝑛
𝑘=0 , where ℎ ≔

𝑏−𝑎

𝑛
= 𝑥𝑘 − 𝑥𝑘−1; 

where 𝑤𝑘 ≔ ∫ 𝐿𝑘(𝑥)𝑑𝑥
𝑏

𝑎
=
𝑏−𝑎

𝑛
∫ ∏

𝑥−𝑗

𝑘−𝑗𝑗∈{0,...,𝑘−1,𝑘+1,...,𝑛} 𝑑𝑥
𝑛

0
. 

Trapezoidal rule & Simpson’s rule are special cases of Newton-Cotes formulas (where n=1 & n=2 respectively). 

Degree of accuracy: The integer 𝑛 s.t. all polynomials with degree≤n will have exact numerical integration. 

Trapezoidal rule = 1, Simpson’s rule = 3, Newton-Cotes (odd n) = n, Newton-Cotes (even n) = n+1 

Composite trapezoidal rule:  ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
= ℎ (

1

2
𝑓(𝑥0) + ∑ 𝑓(𝑥𝑘) +

1

2
𝑓(𝑥𝑛)

𝑛−1
𝑘=1 ) −

ℎ3

12
∑ 𝑓′′(𝜉𝑘)
𝑛
𝑘=1  

If 𝑓 ∈ 𝐶2 (on [𝑎, 𝑏]) then ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
= ℎ (

1

2
𝑓(𝑥0) + ∑ 𝑓(𝑥𝑘) +

1

2
𝑓(𝑥𝑛)

𝑛−1
𝑘=1 ) −

(𝑏−𝑎)ℎ2

12
𝑓′′(𝜉) for some ξ ∈ [𝑎, 𝑏]. 

It has second-order convergence because the error term is proportional to ℎ2. 

Composite Simpson’s rule:  If 𝑛 is even and 𝑓 ∈ 𝐶4 then 

∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
=
ℎ

3
(𝑓(𝑎) + 𝑓(𝑏) + 2∑ 𝑓(𝑥2𝑘)

𝑛

2
−1

𝑘=1 + 4∑ 𝑓(𝑥2𝑘−1)
𝑛

2
𝑘=1 ) −

b−a

180
h4f (4)(ξ) for some ξ ∈ [𝑎, 𝑏]. 

Contraction mapping:  Function 𝑔: [𝑎, 𝑏] → [𝑎, 𝑏] where ∃𝑘 < 1 such that ∀𝑥, 𝑦 ∈ [𝑎, 𝑏], |𝑔(𝑥) − 𝑔(𝑦)| ≤ 𝑘|𝑥 − 𝑦|. 

Every contraction mapping has a unique fixed point. 

∀𝑥 ∈ [𝑎, 𝑏], applying 𝑥 ← 𝑔(𝑥) repeatedly will form a sequence whose limit is the fixed point. 

If ∃𝑘 < 1 such that ∀𝑥 ∈ (𝑎, 𝑏), |𝑔′(𝑥)| < 𝑘, then 𝑔(𝑥) is a contraction mapping. 

Fixed-point iteration:  Given 𝑓(𝑥) = 0, we can define 𝑔(𝑥) = 𝑥 + β(𝑥)𝑓(𝑥) for some nonzero function β, and solve 𝑓(𝑥) =

0 by finding the fixed point of 𝑔(𝑥). 

Newton’s method:  Also finding the solution for 𝑓(𝑥) = 0, but do 𝑥𝑛+1 ≔ 𝑥𝑛 −
𝑓(𝑥𝑛)

𝑓′(𝑥𝑛)
. 

Thm:  If 𝑓 ∈ 𝐶2 (on [𝑎, 𝑏]) and ∃𝑥∗ ∈ (𝑎, 𝑏) such that 𝑓(𝑥∗) = 0 and 𝑓′(𝑥∗) ≠ 0, then ∃δ > 0 such that ∀𝑥0 ∈

[𝑥∗ − δ, 𝑥∗ + δ], the sequence {𝑥𝑛} generated using Newton’s method tends to 𝑥∗. 

Matrix definitions: 

• Symmetric matrix: 𝐴 = 𝐴𝑇 

• Orthogonal matrix: 𝑄𝑇𝑄 = 𝐼 (or 𝑄𝑄𝑇 = 𝐼) (or 𝑄𝑇 = 𝑄−1) 

• Diagonal matrix: All entries that are not on the main diagonal are zero 

• Upper triangular matrix: A square matrix such that 𝑎𝑖𝑗 = 0    ∀ 𝑖 > 𝑗.  

• Lower triangular matrix: A square matrix such that 𝑎𝑖𝑗 = 0    ∀ 𝑖 < 𝑗. 

• Positive definite matrix: For every nonzero column vector 𝑧, 𝑧𝑇𝑀𝑧 > 0.  

• Positive semi-definite matrix: For every nonzero column vector 𝑧, 𝑧𝑇𝑀𝑧 ≥ 0. 

• Negative definite matrix: For every nonzero column vector 𝑧, 𝑧𝑇𝑀𝑧 < 0.  

• Negative semi-definite matrix: For every nonzero column vector 𝑧, 𝑧𝑇𝑀𝑧 ≤ 0. 

• Indefinite matrix: A matrix that is not positive semi-definite and not negative semi-definite. 

Tools: 

• Eigenvalues of a triangular matrix are its diagonal entries 

• The product of the eigenvalues of a matrix is the determinant 

• The sum of the eigenvalues of a matrix is the trace 

• Symmetric matrices have all eigenvalues, and corresponding eigenvectors are mutually orthogonal 


